深入 SharedPreferences:架构、缺点和优化
提问
apply和commit有何区别?- SharedPreferences 是线程安全的吗?它是如何保证线程安全的?
- SharedPreferences 是进程安全的吗?
- 数据丢失时,其最终的屏障 —— 文件备份机制是如何实现的?
- 如何实现进程安全的 SharedPreferences
- SharedPreferences 导致 ANR 的原因
从磁盘加载
以下代码基于 Android 31
SharedPreferences 本质上是:
- 在磁盘上是一个 XML 文件:
/{app internal data dir}/shared_prefs/{name}.xml - 在内存中是一个
Map<String, Object>
构造 SharedPreferences 实例时会立即起一个线程来将磁盘上的 xml 文件加载并解析为内存中的 Map,在加载任务完成前,会通过 mLock 阻塞所有的 get/set 操作
所以在主线程上操作 SharedPreferences 是有可能阻塞主线程导致 ANR 的
SharedPreferencesImpl(File file, int mode) {
mFile = file;
mBackupFile = makeBackupFile(file);
mMode = mode;
mLoaded = false;
mMap = null;
mThrowable = null;
startLoadFromDisk();
}
private void startLoadFromDisk() {
synchronized (mLock) {
mLoaded = false;
}
new Thread("SharedPreferencesImpl-load") {
public void run() {
loadFromDisk();
}
}.start();
}
private void loadFromDisk() {
synchronized (mLock) {
if (mLoaded) {
return;
}
if (mBackupFile.exists()) {
mFile.delete();
mBackupFile.renameTo(mFile);
}
}
// Debugging
if (mFile.exists() && !mFile.canRead()) {
Log.w(TAG, "Attempt to read preferences file " + mFile + " without permission");
}
Map<String, Object> map = null;
StructStat stat = null;
Throwable thrown = null;
try {
stat = Os.stat(mFile.getPath());
if (mFile.canRead()) {
BufferedInputStream str = null;
try {
str = new BufferedInputStream(
new FileInputStream(mFile), 16 * 1024);
map = (Map<String, Object>) XmlUtils.readMapXml(str);
} catch (Exception e) {
Log.w(TAG, "Cannot read " + mFile.getAbsolutePath(), e);
} finally {
IoUtils.closeQuietly(str);
}
}
} catch (ErrnoException e) {
// An errno exception means the stat failed. Treat as empty/non-existing by
// ignoring.
} catch (Throwable t) {
thrown = t;
}
synchronized (mLock) {
mLoaded = true;
mThrowable = thrown;
// It's important that we always signal waiters, even if we'll make
// them fail with an exception. The try-finally is pretty wide, but
// better safe than sorry.
try {
if (thrown == null) {
if (map != null) {
mMap = map;
mStatTimestamp = stat.st_mtim;
mStatSize = stat.st_size;
} else {
mMap = new HashMap<>();
}
}
// In case of a thrown exception, we retain the old map. That allows
// any open editors to commit and store updates.
} catch (Throwable t) {
mThrowable = t;
} finally {
mLock.notifyAll();
}
}
}
public String getString(String key, @Nullable String defValue) {
synchronized (mLock) {
awaitLoadedLocked();
String v = (String)mMap.get(key);
return v != null ? v : defValue;
}
}
public Editor edit() {
synchronized (mLock) {
awaitLoadedLocked();
}
return new EditorImpl();
}
private void awaitLoadedLocked() {
if (!mLoaded) {
// Raise an explicit StrictMode onReadFromDisk for this
// thread, since the real read will be in a different
// thread and otherwise ignored by StrictMode.
BlockGuard.getThreadPolicy().onReadFromDisk();
}
while (!mLoaded) {
try {
mLock.wait();
} catch (InterruptedException unused) {
}
}
if (mThrowable != null) {
throw new IllegalStateException(mThrowable);
}
}编辑器 Editor
SharedPreferences.Editor是线程安全的- 编辑的过程其实是在记录编辑操作,在最终
apply/commit之前都不会影响内存和磁盘里的数据
public Editor putString(String key, @Nullable String value) {
synchronized (mEditorLock) {
mModified.put(key, value);
return this;
}
}
public Editor putInt(String key, int value) {
synchronized (mEditorLock) {
mModified.put(key, value);
return this;
}
}
public Editor remove(String key) {
synchronized (mEditorLock) {
mModified.put(key, this);
return this;
}
}
public Editor clear() {
synchronized (mEditorLock) {
mClear = true;
return this;
}
}注意 Editor.clear() 操作是清空 SharedPreferences 里的数据,具体来说是清空已提交的数据,在 Editor 里尚未提交的数据并不会被清空
private MemoryCommitResult commitToMemory() {
// ...
synchronized (mEditorLock) {
boolean changesMade = false;
if (mClear) {
if (!mapToWriteToDisk.isEmpty()) {
changesMade = true;
mapToWriteToDisk.clear();
}
keysCleared = true;
mClear = false;
}
for (Map.Entry<String, Object> e : mModified.entrySet()) {
// ...
}
}
}@Test
fun useAppContext() {
val appContext = InstrumentationRegistry.getInstrumentation().targetContext
val sp = appContext.getSharedPreferences("test", Context.MODE_PRIVATE)
sp.edit { clear() }
sp.edit {
putBoolean("b", true)
putFloat("f", 0.3f)
putString("s", "apple")
}
sp.edit {
putInt("i", 99)
putLong("l", 999L)
clear()
}
Log.d("cyrus", sp.all.map { "${it.key} - ${it.value}" }.joinToString())
// l - 999, i - 99
// 虽然 clear 操作排在最后面但它并不会清空 i 和 l
}二阶段提交
上面说过 SharedPreferences 本质上是内存中的 Map 对象和磁盘上的 XML 文件,所以提交一个修改就会产生二阶段提交:提交到内存(commitToMemory)和提交到磁盘(writeToFile)
commitToMemory
- 提交到内存也就是把修改操作应用到
mMap,由mLock上锁 - 对应地内存的版本号(
mCurrentMemoryStateGeneration)会自增 - 在提交至内存后,尚未提交到磁盘前,
mDiskWritesInFlight会自增,也就说 mDiskWritesInFlight > 0 表示有修改正在等待提交到磁盘 - 提交至内存的过程中是直接修改
mMap的,后续提交至磁盘的过程使用了MemoryCommitResult,它也是直接引用mMap的,但是提交至磁盘的操作只对mWritingToDiskLock上锁,这就造成对象的多线程读写问题:一个线程拿到锁mLock读写mMap同时另一线程拿到mWritingToDiskLock读mMap,所以当 mDiskWritesInFlight > 0 时得将mMap复制一份使用,也就是写时复制的思想(copy on write)如CopyOnWriteArrayList
private MemoryCommitResult commitToMemory() {
long memoryStateGeneration;
List<String> keysModified = null;
Set<OnSharedPreferenceChangeListener> listeners = null;
Map<String, Object> mapToWriteToDisk;
synchronized (SharedPreferencesImpl.this.mLock) {
// We optimistically don't make a deep copy until
// a memory commit comes in when we're already
// writing to disk.
if (mDiskWritesInFlight > 0) {
// We can't modify our mMap as a currently
// in-flight write owns it. Clone it before
// modifying it.
// noinspection unchecked
mMap = new HashMap<String, Object>(mMap);
}
mapToWriteToDisk = mMap;
mDiskWritesInFlight++;
boolean hasListeners = mListeners.size() > 0;
if (hasListeners) {
keysModified = new ArrayList<String>();
listeners = new HashSet<OnSharedPreferenceChangeListener>(mListeners.keySet());
}
synchronized (mEditorLock) {
boolean changesMade = false;
if (mClear) {
if (!mapToWriteToDisk.isEmpty()) {
changesMade = true;
mapToWriteToDisk.clear();
}
mClear = false;
}
for (Map.Entry<String, Object> e : mModified.entrySet()) {
String k = e.getKey();
Object v = e.getValue();
// "this" is the magic value for a removal mutation. In addition,
// setting a value to "null" for a given key is specified to be
// equivalent to calling remove on that key.
if (v == this || v == null) {
if (!mapToWriteToDisk.containsKey(k)) {
continue;
}
mapToWriteToDisk.remove(k);
} else {
if (mapToWriteToDisk.containsKey(k)) {
Object existingValue = mapToWriteToDisk.get(k);
if (existingValue != null && existingValue.equals(v)) {
continue;
}
}
mapToWriteToDisk.put(k, v);
}
changesMade = true;
if (hasListeners) {
keysModified.add(k);
}
}
mModified.clear();
if (changesMade) {
mCurrentMemoryStateGeneration++;
}
memoryStateGeneration = mCurrentMemoryStateGeneration;
}
}
return new MemoryCommitResult(memoryStateGeneration, keysModified, listeners,
mapToWriteToDisk);
}writeToFile
isFromSyncCommit,true - 来自commit,false - 来自apply使用 backup file 策略确保文件写操作的完整性、原子性:
文件写之前将 XML 文件
mFile剪切到mBackupFile,写完将 mBackupFile 删除文件写之前发现有 mBackupFile 说明上一次的写操作没有正确结束,mFile 是不正确的,删掉 mFile 即可(当前提交至磁盘的内容是最新的,不用管之前的版本)
第一次打开文件
loadFromDisk时发现 mBackupFile 存在,说明上一次的写操作是不正确的(比如在写的过程中 killed),那么 mFile 即是不正确的(删掉),要以 mBackupFile 为准(将其 rename to mFile)
使用
mDiskStateGeneration标识 XML 文件的版本,文件写操作完成后会将其置为MemoryCommitResult.memoryStateGeneration,也即内存版本号和磁盘版本号最终会保持一致,那么:因为是先提交至内存再提交至磁盘,磁盘版本号 mDiskStateGeneration 肯定是小于等于内存版本号的 mcr.memoryStateGeneration,否则就是异常状态了
如果是 apply,两个阶段的提交逻辑上是异步的,只有当即将提交到磁盘的 snapshot 的版本是当前内存的最新的版本时(
mCurrentMemoryStateGeneration == mcr.memoryStateGeneration)才写入到文件,否则等待后续的文件写任务将最新内存版本写入文件即可如果是 commit,两个阶段的提交逻辑上是同步的,每个提交到内存的版本的 snapshot 都需要同步到磁盘
final Runnable writeToDiskRunnable = new Runnable() {
@Override
public void run() {
synchronized (mWritingToDiskLock) {
writeToFile(mcr, isFromSyncCommit);
}
synchronized (mLock) {
mDiskWritesInFlight--;
}
if (postWriteRunnable != null) {
postWriteRunnable.run();
}
}
};
private void writeToFile(MemoryCommitResult mcr, boolean isFromSyncCommit) {
long startTime = 0;
long existsTime = 0;
long backupExistsTime = 0;
long outputStreamCreateTime = 0;
long writeTime = 0;
long fsyncTime = 0;
long setPermTime = 0;
long fstatTime = 0;
long deleteTime = 0;
if (DEBUG) {
startTime = System.currentTimeMillis();
}
boolean fileExists = mFile.exists();
if (DEBUG) {
existsTime = System.currentTimeMillis();
// Might not be set, hence init them to a default value
backupExistsTime = existsTime;
}
// Rename the current file so it may be used as a backup during the next read
if (fileExists) {
boolean needsWrite = false;
// Only need to write if the disk state is older than this commit
if (mDiskStateGeneration < mcr.memoryStateGeneration) {
if (isFromSyncCommit) {
needsWrite = true;
} else {
synchronized (mLock) {
// No need to persist intermediate states. Just wait for the latest state to
// be persisted.
if (mCurrentMemoryStateGeneration == mcr.memoryStateGeneration) {
needsWrite = true;
}
}
}
}
if (!needsWrite) {
mcr.setDiskWriteResult(false, true);
return;
}
boolean backupFileExists = mBackupFile.exists();
if (DEBUG) {
backupExistsTime = System.currentTimeMillis();
}
if (!backupFileExists) {
if (!mFile.renameTo(mBackupFile)) {
Log.e(TAG, "Couldn't rename file " + mFile
+ " to backup file " + mBackupFile);
mcr.setDiskWriteResult(false, false);
return;
}
} else {
mFile.delete();
}
}
// Attempt to write the file, delete the backup and return true as atomically as
// possible. If any exception occurs, delete the new file; next time we will restore
// from the backup.
try {
FileOutputStream str = createFileOutputStream(mFile);
if (DEBUG) {
outputStreamCreateTime = System.currentTimeMillis();
}
if (str == null) {
mcr.setDiskWriteResult(false, false);
return;
}
XmlUtils.writeMapXml(mcr.mapToWriteToDisk, str);
writeTime = System.currentTimeMillis();
FileUtils.sync(str);
fsyncTime = System.currentTimeMillis();
str.close();
ContextImpl.setFilePermissionsFromMode(mFile.getPath(), mMode, 0);
if (DEBUG) {
setPermTime = System.currentTimeMillis();
}
try {
final StructStat stat = Os.stat(mFile.getPath());
synchronized (mLock) {
mStatTimestamp = stat.st_mtim;
mStatSize = stat.st_size;
}
} catch (ErrnoException e) {
// Do nothing
}
if (DEBUG) {
fstatTime = System.currentTimeMillis();
}
// Writing was successful, delete the backup file if there is one.
mBackupFile.delete();
if (DEBUG) {
deleteTime = System.currentTimeMillis();
}
mDiskStateGeneration = mcr.memoryStateGeneration;
mcr.setDiskWriteResult(true, true);
if (DEBUG) {
Log.d(TAG, "write: " + (existsTime - startTime) + "/"
+ (backupExistsTime - startTime) + "/"
+ (outputStreamCreateTime - startTime) + "/"
+ (writeTime - startTime) + "/"
+ (fsyncTime - startTime) + "/"
+ (setPermTime - startTime) + "/"
+ (fstatTime - startTime) + "/"
+ (deleteTime - startTime));
}
long fsyncDuration = fsyncTime - writeTime;
mSyncTimes.add((int) fsyncDuration);
mNumSync++;
if (DEBUG || mNumSync % 1024 == 0 || fsyncDuration > MAX_FSYNC_DURATION_MILLIS) {
mSyncTimes.log(TAG, "Time required to fsync " + mFile + ": ");
}
return;
} catch (XmlPullParserException e) {
Log.w(TAG, "writeToFile: Got exception:", e);
} catch (IOException e) {
Log.w(TAG, "writeToFile: Got exception:", e);
}
// Clean up an unsuccessfully written file
if (mFile.exists()) {
if (!mFile.delete()) {
Log.e(TAG, "Couldn't clean up partially-written file " + mFile);
}
}
mcr.setDiskWriteResult(false, false);
}apply & commit
了解了二阶段提交后,apply 和 commit 的逻辑与区别也清晰起来
apply 立刻将修改提交至内存,然后将提交至磁盘的任务延迟个 100ms 交由工作队列
QueuedWork执行,不阻塞当前线程;而且在工作队列里,多个 apply 产生的提交会被优化为只有最后那个(最新的修改,与内存版本一致的修改)才会真正执行文件写操作commit 也是立刻将修改提交至内存,然后提交至磁盘时分两种情况:
- 如果此时只有一个提交磁盘的任务(
mDiskWritesInFlight == 1),那么由当前线程来执行文件写操作 - 否则将提交至磁盘的任务交由工作队列 QueuedWork 执行(无延迟),但当前线程会阻塞直到文件写操作完成
- 如果此时只有一个提交磁盘的任务(
但无论哪种情况,commit 都会导致当前线程直到提交至磁盘后才返回,也即 commit 会确保当前修改写入至文件
public void apply() {
final long startTime = System.currentTimeMillis();
final MemoryCommitResult mcr = commitToMemory();
final Runnable awaitCommit = new Runnable() {
@Override
public void run() {
try {
mcr.writtenToDiskLatch.await();
} catch (InterruptedException ignored) {}
if (DEBUG && mcr.wasWritten) {
Log.d(TAG, mFile.getName() + ":" + mcr.memoryStateGeneration
+ " applied after " + (System.currentTimeMillis() - startTime)
+ " ms");
}
}
};
QueuedWork.addFinisher(awaitCommit);
Runnable postWriteRunnable = new Runnable() {
@Override
public void run() {
awaitCommit.run();
QueuedWork.removeFinisher(awaitCommit);
}
};
SharedPreferencesImpl.this.enqueueDiskWrite(mcr, postWriteRunnable);
// Okay to notify the listeners before it's hit disk
// because the listeners should always get the same
// SharedPreferences instance back, which has the
// changes reflected in memory.
notifyListeners(mcr);
}
public boolean commit() {
long startTime = 0;
if (DEBUG) {
startTime = System.currentTimeMillis();
}
MemoryCommitResult mcr = commitToMemory();
SharedPreferencesImpl.this.enqueueDiskWrite(
mcr, null /* sync write on this thread okay */);
try {
mcr.writtenToDiskLatch.await();
} catch (InterruptedException e) {
return false;
} finally {
if (DEBUG) {
Log.d(TAG, mFile.getName() + ":" + mcr.memoryStateGeneration
+ " committed after " + (System.currentTimeMillis() - startTime)
+ " ms");
}
}
notifyListeners(mcr);
return mcr.writeToDiskResult;
}对于上面提问的回答
apply和commit有何区别?- commit 会被阻塞 or 执行文件写操作直到修改提交至磁盘(确保完成二阶段提交),不适合在主线程执行
- apply 只提交至内存,将提交至磁盘的任务交由其他线程执行,适合在主线程执行
- apply 在频繁修改的情况下性能要比 commit 好,因为只有最新的 snapshot(具有最新的版本号)才会真正写入至文件,旧的 snapshot 会被忽略(即使写入文件后续还是会被更新的 snapshot 覆盖,不如省了一次文件写)
- commit 确保修改能同时被提交至内存和磁盘,频繁的修改就会产生频繁的文件 IO
- 由于 apply 只写入最新的 snapshot 至文件,极端情况下可能因为没有及时提交磁盘被 killed 而导致修改丢失
SharedPreferences 是线程安全的吗?它是如何保证线程安全的?
是线程安全的,Editor 使用
mLock确保内存层面的线程安全,使用mWritingToDiskLock确保磁盘文件的线程安全SharedPreferences 是进程安全的吗?
不是:
- 它没有使用文件锁等进程间同步工具来确保多进程对 XML 文件的安全读写
- 它只在构造时从文件读取内容,后续都是写操作,其他进程对 XML 文件的修改当前进程并不知道
数据丢失时,其最终的屏障 —— 文件备份机制是如何实现的?
见上面对
mFile和mBackupFile的说明如何实现进程安全的 SharedPreferences
- 对于 XML 文件的读写操作需要加上文件锁
- 用
epoll监控 XML 文件内容的改变
SharedPreferences 导致 ANR 的原因
- 构造 SharedPreferences 实例时会解析 XML 文件,在解析操作完成前主线程调用 get 方法会阻塞,从而阻塞主线程
- 主线程执行 commit 发生文件 IO or 阻塞,从而导致主线程阻塞